Spring Cloud技术分析(3)- spring cloud sleuth

1. 目的
(1)提供链路追踪。通过sleuth可以很清楚的看出一个请求都经过了哪些服务。可以很方便的理清服务间的调用关系。
(2)可视化错误。对于程序未捕捉的异常,可以在zipkin界面上看到。
(3)分析耗时。通过sleuth可以很方便的看出每个采样请求的耗时,分析出哪些服务调用比较耗时。当服务调用的耗时随着请求量的增大而增大时,也可以对服务的扩容提供一定的提醒作用。
(4)优化链路。对于频繁地调用一个服务,或者并行地调用等,可以针对业务做一些优化措施。
2. 应用程序集成spring cloud sleuth
spring cloud sleuth可以结合zipkin,将信息发送到zipkin,利用zipkin的存储来存储信息,利用zipkin ui来展示数据。同时也可以只是简单的将数据记在日志中。2.1 仅仅使用sleuth+log配置maven配置
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR6</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
这种方式只需要引入jar包即可。如果配置log4j,这样会在打印出如下的日志:
2017-04-08 23:56:50.459 INFO [bootstrap,38d6049ff0686023,d1b8b0352d3f6fa9,false] 8764 — [nio-8080-exec-1] demo.JpaSingleDatasourceApplication : Step 2: Handling print
2017-04-08 23:56:50.459 INFO [bootstrap,38d6049ff0686023,d1b8b0352d3f6fa9,false] 8764 — [nio-8080-exec-1] demo.JpaSingleDatasourceApplication : Step 1: Handling home
比原先的日志多出了 [bootstrap,38d6049ff0686023,d1b8b0352d3f6fa9,false] 这些内容,[appname,traceId,spanId,exportable]。
(1)appname:服务名称
(2)traceId\spanId:链路追踪的两个术语,后面有介绍
(3)exportable:是否是发送给zipkin
2.2 sleuth+zipkin+http
sleuth收集跟踪信息通过http请求发给zipkin。这种需要启动一个zipkin,zipkin用来存储数据和展示数据。大体流程图/uploads/fox/12104147_0.png
BlockingQueue的大小sleuth写死了为1000。当队列满了还往里放的话,sleuth只是加了个记录处理。应用程序配置maven引入
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR6</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

配置文件配置
spring.sleuth.sampler.percentage=0.1  采样率 
spring.zipkin.baseUrl=http://zipkin.xxx.com 发送到zipkinServer的url
spring.zipkin.enabled=true


zipkinmaven引入
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin-stream</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-autoconfigure-ui</artifactId>
<!--<version>1.40.2</version>-->
</dependency>


spring boot程序
@SpringBootApplication(exclude = SleuthStreamAutoConfiguration.class)
@EnableZipkinServer
public class SleuthServerApplication
{
public static void main(String args)
{
SpringApplication.run(SleuthServerApplication.class, args);
}
}

存储配置
zipkin的存储包括mysql、es、cassadra。如果不配置存储的话,默认是在内存中的。如果在内存中的话,当重启应用后,数据就会丢失了。mysql存储
spring:
application:
name: sleuth-zipkin-http
datasource:
schema: classpath:/mysql.sql
url: jdbc:mysql://192.168.3.3:2222/zipkin
driverClassName: com.mysql.jdbc.Driver
username: app
password: %jdbc-1.password%
# Switch this on to create the schema on startup:
initialize: true
continueOnError: true
sleuth:
enabled: false

# default is mem (in-memory)
zipkin:
storage:
type: mysql


mysql的脚本在zipkin包里已经提供了,只需要执行一下就可以了。es存储
zipkin:
storage:
type: elasticsearch
elasticsearch:
cluster: ${ES_CLUSTER:elasticsearch}
hosts: ${ES_HOSTS:localhost:9300}
index: ${ES_INDEX:zipkin}
index-shards: ${ES_INDEX_SHARDS:5}
index-replicas: ${ES_INDEX_REPLICAS:1}


2.3 sletuh+streaming+zipkin
这种方式通过spring cloud streaming将追踪信息发送到zipkin。spring cloud streaming目前只有kafka和rabbitmq的binder。以kafka为例:大体流程/uploads/fox/12104147_1.png
Collector是源码的类名。Collector从消息中间件中读取数据并存储到db和es中。应用程序配置maven引入
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Camden.SR6</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-stream</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

zipkinmaven引入
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin-stream</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-autoconfigure-ui</artifactId>
<!--<version>1.40.2</version>-->
</dependency>


spring boot程序
@EnableZipkinStreamServer
@EnableBinding(SleuthSink.class)
@SpringBootApplication(exclude = SleuthStreamAutoConfiguration.class)
@MessageEndpoint
public class SleuthServerApplication
{
public static void main(String args)
{
SpringApplication.run(SleuthServerApplication.class, args);
}
}


配置
stream:
kafka:
binder:
brokers: xxx:9098,xxx:9098,xxx:9098
zk-nodes: xxx:2186,xxx:2186,xxx:2186,xxx:2186,xxx:2186



存储配置和上面的一样。3. sleuth支持
通过sleuth-core的jar包结构,可以很明显的看出,sleuth可以进行链路追踪的代码:/uploads/fox/12104147_2.png
 
web下面包括http和feign。3.1 http
可以通过spring.sleuth.web.enabled=false来禁止这种类型的链路追踪。http支持实现的关键类是 TraceFilter和TraceHandlerInterceptor。
(1)TraceFilter:对入站的请求加上X-B3-SpanId、X-B3-TraceId等属性,来对请求进行链路追踪。这时候,Span的名字为http:加上请求的路径。例如,如果请求是/foo/bar,那span名字就是http:/foo/bar。
(2)TraceHandlerInterceptor:如果需要对span名字进行进一步的控制,可以使用TraceHandlerInterceptor,它会对已有的HandlerInterceptor进行包装,或者直接添加到已有的HandlerInterceptors中。TraceHandlerInterceptor会在HttpServletRequest中添加一个特别的request attribute。如果TraceFilter没有发现这个属性,就会创建一个额外的“fallback”(保底)span,这样确保跟踪信息完整。
3.2 runnable、callable、Executor
可以通过 TraceRunnable 和 TraceCallable来对runnable和callable进行包装。也可以用LazyTraceExecutor来代替java的Executor。比如:
@Autowired
private BeanFactory beanFactory;
private static final ExecutorService EXECUTOR = Executors.newFixedThreadPool(2);
@RequestMapping("/service1")
public String service1()
{

Runnable runnable = () ->
{
try
{
Thread.sleep(1000);
}
catch (Exception e)
{
e.printStackTrace();
}
};
Executor executor = new LazyTraceExecutor(beanFactory, EXECUTOR);
executor.execute(runnable);
return "hello world";
}



这样每次执行都有span的新建和销毁。通过LazyTraceExecutor源码可以很轻松的看到:
@Override
public void run() {
Span span = startSpan();
try {
this.getDelegate().run();
}
finally {
close(span);
}
}



 3.3 feign
默认情况下,Spring Cloud Sleuth提供了一个
TraceFeignClientAutoConfiguration
来整合Feign。如果需要禁用的话,可以设置
spring.sleuth.feign.enabled
false
。如果禁用,与Feign相关的机制就不会发生。3.4 RxJava
建议自定义一个
RxJavaSchedulersHook
,它使用
TraceAction
来包装实例中所有的
Action0
。这个钩子对象,会根据之前调度的Action是否已经开始跟踪,来决定是创建还是延续使用span。可以通过设置
spring.sleuth.rxjava.schedulers.hook.enabled
false
来关闭这个对象的使用。可以定义一组正则表达式来对线程名进行过滤,来选择哪些线程不需要跟踪。可以使用逗号分割的方式来配置
spring.sleuth.rxjava.schedulers.ignoredthreads
属性。
3.5 messaging
Spring Cloud Sleuth本身就整合了Spring Integration。它发布/订阅事件都是会创建span。可以设置spring.sleuth.integration.enabled=false来禁用这个机制。4 基本概念
因为sleuth是根据google的dapper论文而来的,所以用的术语和dapper一样。/uploads/fox/12104147_3.png4.1 术语
(1)span:最基本的工作单元。由spanId来标志。Span也可以带有其他数据,例如:描述,时间戳,键值对标签,起始Span的ID,以及处理ID(通常使用IP地址)等等。 Span有起始和结束,他们跟踪着时间信息。span应该都是成对出现的,所以一旦创建了一个span,那就必须在未来某个时间点结束它。起始的span通常被称为:root span。它的id通常也被作为一个跟踪记录的id。
(2)traceId:一个树结构的span集合。把相同traceId的span串起来。
(3)annotation:用于记录一个事件时间信息。
  (3-1)cs:client send。客户端发送,一个span的开始
  (3-2)cr:client receive。客户端接收。一个span的结束
  (3-3)ss:server send。服务器发送
  (3-4)sr:server receive。服务器接收,开始处理。
  (3-5)sr-cs和cr-ss:表示网络传输时长
  (3-6)ss-sr:表示服务端处理请求的时长
  (3-7)cr-cs:表示请求的响应时长
4.2 采样率
如果服务的流量很大,全部采集对存储压力比较大。这个时候可以设置采样率,sleuth 可以通过设置 spring.sleuth.sampler.percentage=0.1。不配置的话,默认采样率是0.1。也可以通过实现bean的方式来设置采样为全部采样(AlwaysSampler)或者不采样(NeverSampler):如
@Bean public Sampler defaultSampler() {
return new AlwaysSampler();
}
sleuth采样算法的实现是 Reservoir sampling(水塘抽样)。实现类是 PercentageBasedSampler。
 
本文转载自:http://tech.lede.com/2017/04/1 ... euth/

0 个评论

要回复文章请先登录注册